1204

Estimation of recruitment in catch-at-age models

Mark N. Maunder and Richard B. Deriso

Abstract: Management strategies must be designed to take into account the uncertainty inherent in fish populations and
their assessments. Annual recruitment variation is an important component of uncertainty. Several methods that allow
the estimation of annual recruitment in statistical catch-at-age models are described: (a) maximum likelihood estimation
with no penalty on the annual recruitment residuals, (b) maximum likelihood estimation with a lognormal penalty on
the annual recruitment residuals, (¢) importance sampling to numerically approximate the marginal likelihood with a
lognormal penalty on the annual recruitment residuals, and (d) full Bayesian integration using Markov Chain Monte
Carlo with a lognormal prior on the annual recruitment residuals. Simulation analysis is used to test the performance of
these methods. All four methods perform similarly at estimating quantities that are based on averaging or summing
multiple estimates of annual recruitment; however the marginal likelihood method (c¢) and Bayesian integration (d) per-
form best at estimating annual recruitment and the standard deviation in annual recruitment residuals (6g) when catch-
at-age data is missing for some years. The ability to estimate 6 can be important for defining uncertainty when
developing management strategies. The methods are applied to a New Zealand snapper (Pagrus auratus) stock and the
estimate of oy is approximately 0.6.

Résumé : Les stratégies de gestion doivent étre élaborées de maniere a tenir compte de I’incertitude inhérente aux
populations de poissons et a leurs évaluations. La variation annuelle du recrutement est une composante importante de
cette incertitude. On trouvera ici la description de plusieurs méthodes qui permettent d’estimer le recrutement annuel a
I’aide de modeles statistiques basés sur les captures en fonction de 1’4ge : (a) une estimation de vraisemblance maxi-
male sans pénalité pour les résiduels du recrutement annuel, (b) une estimation de vraisemblance maximale avec une
pénalité de type lognormal sur les résiduels du recrutement annuel, (¢) un échantillonnage pondéré pour obtenir une
approximation de la vraisemblance marginale avec une pénalité de type lognormal sur les résiduels du recrutement
annuel et (d) une intégration bayésienne complete a 1’aide de la méthode de Monte Carlo par chaine de Markov avec
un a priori de type lognormal sur les résiduels du recrutement annuel. Une analyse de simulation permet de vérifier la
performance de ces méthodes. Les quatre méthodes fonctionnent de maniere semblable dans I’estimation de valeurs
basées sur la somme ou la moyenne d’estimations multiples du recrutement annuel; cependant, la méthode de vraisem-
blance marginale (c¢) et I'intégration bayésienne (d) sont les meilleures pour estimer le recrutement annuel et 1’écart
type des résiduels du recrutement annuel (Gy), lorsque les données de captures en fonction de I’age sont absentes pour
certaines des années. La capacité d’estimer Gy peut étre importante pour définir 1’incertitude dans I’élaboration de stra-
tégies de gestion. Ces méthodes sont appliquées a un stock de dorades royales (Pagrus auratus) et 1’estimation de Oy
est d’approximativement 0,6.

[Traduit par la Rédaction]

Introduction

Annual recruitment variation is an important component
for the management of fish stocks. Management strategies
must be designed to take into account the uncertainty inher-
ent in fish populations and their assessments. Uncertainty
can be divided into estimation uncertainty and future uncer-
tainty. Estimation uncertainty encompasses all uncertainty
about the model structure and the associated parameter esti-
mates. Future uncertainty includes how processes may change
in the future irrespective of how well we have estimated
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them in the past. Recruitment variation, a form of future un-
certainty, can be a significant component of the total uncer-
tainty, especially if the recruiting year class comprises a
large proportion of the total population. Populations with
different levels of recruitment variability have different
probabilities of extinction and recovery. One method to de-
termine uncertainty from recruitment variation is to assume
that future recruitment will occur with a similar distribution
and time-series structure to historical recruitment. Therefore,
it is important to have good estimates of historic recruitment
variability.

Is it appropriate to put distributional constraints on annual
recruitment in a fisheries stock assessment model? Some
analysts would argue that we should not include any prior
information in the analysis and let the data provide informa-
tion about the variability in recruitment. The problem with
this argument is that many applications only have sporadic
catch-at-age data for the early time period and the estimates
of annual recruitment for this period fluctuate more than
would be reasonable for a typical fish stock. The variability
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seen in the annual recruitment estimates is exaggerated by
the uncertainty in these estimates, and any inferences based
on the point estimates of recruitment would be invalid (e.g.,
stock—recruitment relationships, environmental correlations
with recruitment, stochastic forward projections). The inclu-
sion of estimates of uncertainty for the recruitments is essen-
tial for these analyses, but frequently they are not included.
The above argument also assumed that we have not learned
anything from the many years of fisheries research, which is
inconsistent with the scientific method (Hilborn and Liermann
1998). From previous studies, we know that recruitment is
usually lognormally distributed and that the average stan-
dard deviation of the logarithm of the annual recruitment re-
siduals over many fish species is around 0.6 (Beddington
and Cooke 1983).

The method that is often used to constrain annual recruit-
ment variation in stock assessment models (e.g., Maunder
and Starr 2001) is similar to methods used for random ef-
fects models (Davidian and Giltinan 1995). In contrast to the
argument presented above, the methods used for random ef-
fects models make prior assumptions about the distribution
of parameters to allow information to be shared between
data sets. The annual recruitment is comprised of two com-
ponents, a fixed effect that is common to all years and a ran-
dom effect that is different for each year. The fixed effect is
usually the average recruitment or the recruitment expected
from a stock-recruitment relationship. The random effect is
the annual residual and is constrained by a distributional as-
sumption. The distribution that is used to constrain the ran-
dom effect is usually lognormal with the standard deviation
of the logarithm of the annual recruitment residuals fixed
(often at 0.6, e.g., Smith and Punt 1998). In traditional ran-
dom effects models, the standard deviation is estimated as a
parameter in the model rather than being fixed at a predeter-
mined value (Davidian and Giltinan 1995). The estimation
methods used in fisheries stock assessment are often based
on maximizing the full likelihood function (e.g., Smith and
Punt 1998; Maunder and Starr 2001). However, the estima-
tion methods used in traditional random effects models usu-
ally integrate over the random effects to produce a marginal
likelihood function; this marginal likelihood is maximized to
estimate the model parameters (Davidian and Giltinan 1995).
The marginal likelihood is often a better choice because as
the number of years in the model increases, the number of
parameters does not increase. Therefore, asymptotic approx-
imations work better for the marginal likelihood (Gelman et
al. 1995). This is particularly true for annual recruitment re-
siduals in years for which there are no catch-at-age data. Un-
fortunately, annual recruitment is nonlinearly intertwined in
the likelihood functions for catch-at-age, catch-per-unit-effort
(CPUE), and trawl survey data, so that analytical solutions
for the integral are not possible. Therefore, numerical inte-
gration or an approximation is required to calculate the mar-
ginal likelihood function.

Full Bayesian integration is an alternative to maximizing
the marginal distribution. Bayesian analysis integrates the
probability distribution across all model parameters as op-
posed to just across the random effects. However, in Bayesian
analysis, prior distributions are required for all model pa-
rameters. Bayesian analysis has been used in several fisher-
ies applications (e.g., McAllister et al. 1994; Maunder et al.
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2000; Maunder and Starr 2001) and has recently been re-
viewed by Punt and Hilborn (1997) and McAllister and
Kirkwood (1998).

We use simulation analysis to investigate several estima-
tion methods that incorporate annual recruitment residuals in
a simple catch-at-age model: (a) maximum likelihood esti-
mation with no penalty on the annual recruitment residuals,
(b) maximum likelihood estimation with a lognormal penalty
on the annual recruitment residuals, (¢) importance sampling
to numerically approximate the marginal likelihood (inte-
grated across the annual recruitment residuals) with a log-
normal penalty on the annual recruitment residuals, and
(d) full Bayesian integration with a lognormal prior on the
annual recruitment residuals. We also investigate the effect
of using an informative prior for the standard deviation of
the logarithm of the annual recruitment residuals for meth-
ods b—d and the effect of recruitment being uniformly dis-
tributed rather than lognormally distributed as assumed. We
apply the methods to estimate the variation in recruitment
for the snapper (Pagrus auratus) stock on the west coast of
the North Island of New Zealand.

Estimation methods

_Annual recruitment, R,, is defined as average recruitment,
R, multiplied by an annual residual, €, that is exponentiated
and bias corrected (e.g., Maunder and Starr 2001):

(l) Rt — EGS‘.—O.SG:];

The annual residual is modified by a lognormal bias correc-
tion factor, —0.502R, to ensure that R is equal to the mean re-
cruitment (rather than the median), where 6y is the standard
deviation of the logarithm of the annual recruitment residu-
als.

The annual recruitment is assumed to come from a log-
normal distribution so that € , ~ N(0,0g). A penalty (eq. 2)
is added to the negative log-likelihood function to constrain
the annual recruitment residuals (ignoring constants):

€2
(2)  -InP@Elog) = Y In(cg) + .
y

20

The estimates using the full likelihood function minimize
the combined negative log-likelihood (the terms penalized
negative log-likelihood or negative log-posterior probability
are also used because of the distributional assumption in-
cluded for the recruitment residuals) including, in a typical
statistical catch-at-age model, the catch-at-age data (C@A)
and the CPUE or trawl survey data (eq. 3). This method as-
sumes that the annual recruitment residuals are unknown pa-
rameters to be estimated.

3) —-InL(yl®) = —InL(CPUEl¢,e)

— InL(C@Al¢,e) — InP(eloy)
where ¢ are the model parameters, including the process
(o) and observation error variances, excluding the annual
recruitment residuals (€); 0 = {¢,€}; and y is the full data set
y = {CPUE, C@A}.

Traditional random effects models assume that the random
effects (annual recruitment residuals) are random variables
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(nuisance parameters), and therefore, they are integrated out
to form a marginal likelihood function, P(yl¢). To produce
the marginal likelihood, the full likelihood is integrated over
€ (eq. 4).

4)  L(yl) = [ LICPUElp.£) L(C@A)Ig.8)P(elg)de

Because of the nonlinear nature of the problem, a numerical
solution or an approximation is needed for the integral. We
use importance sampling (IS) to numerically approximate
the integral. This method integrates across the random ef-
fects and therefore cannot be used directly to estimate the
annual recruitments or other derived parameters that are
functions of the annual recruitments. These parameters are
estimated by fixing the variance parameters at the values es-
timated using the marginal likelihood (eq. 4) while estimat-
ing € and remaining parameters using the full likelihood
(eq. 3).

The previously mentioned methods only use the historical
information that recruitment is usually lognormally distrib-
uted. There is also historical information on the value of the
standard deviation for this distribution, P(Gg). This informa-
tion can be combined with the negative log-likelihood func-
tion (in this case, we use the posterior probability notation

(eq. 5)):

®)) —InP(@ly) = —-InL(CPUEl¢p,¢)
— InL(C@A)l¢,e) — InP(elog) — InP(CR)

The prior can be generated by using a parametric representa-
tion of the frequency distribution of 6y from many fish
stocks that have estimates of annual recruitment. For exam-
ple, Smith and Punt (1998) suggest that |15, = 0.6 based on
Beddington and Cooke (1983). Assuming 65, = 0.2, oy is
normally distributed, and ignoring constants,

_ (og — 0.6)*
6 —InP =05k
6) -InP(og) 5

Prior information is usually associated with full Bayesian in-
tegration, which requires integration over all model parame-
ters (see Punt and Hilborn (1997) for a review of Bayesian
analysis in fisheries stock assessment). However, it is not
necessary to do full Bayesian integration to make use of
prior information. For example, the mode of the joint poste-
rior distribution, which can be found using a function
optimizer, can be used as estimates of the model parameters
(e.g., Maunder and Starr 2001). Statistical inference should
not be solely based on one’s ideological view (e.g., Bayesian
vs. Frequentist), but based on practical methods that perform
well (precise and accurate) and are robust to assumptions.
Therefore, we test the penalized likelihood, IS, and full
Bayesian integration methods that include a prior for 6. We
now describe the details of each of the estimation methods.

Likelihood (MLE)
In this method, the full negative log-likelihood, excluding
the annual recruitment penalty term,

@) —-InL(yl0) = -InL(CPUEI0) — In L(C@AIO)
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is minimized to estimate all parameters of the model. In the
implementation of this method, R is not estimated, as it
would be a redundant parameter, and instead of estimating €,
the R, are estimated directly and

— 1
(8 R :?ZRy
y
1/2

2
D lln(Ry) - % D ln(R),)]
S

y

©  og= o

Penalized likelihood (PL)

In this method, the full negative log-likelihood, including
the annual recruitment penalty term (eq. 3), is minimized to
estimate all parameters of the model, including the annual
recruitment residuals, which are assumed to be unknown pa-
rameters to estimate. This is equivalent to finding the mode
of the posterior distribution of a hierarchical Bayesian model
with locally uniform priors on all model parameters except
the annual recruitment residuals.

Importance sampling (IS)

The marginal likelihood function can be approximated with
numerical integration using IS (Gelman et al. 1995, pp. 307-
308). The importance function is a multivariate normal based
on the estimates of the recruitment residuals, €, and the cor-
responding variance—covariance matrix V when the variance
parameters are fixed. The algorithm alternates between up-
dating the importance function (step 2) and performing the
numerical integration (steps 3—4).

(1) Choose initial values for ¢.

(2) Use an iterative function minimizer to estimate € (and
V), R, and q, while keeping 6y and 6 ¢pyg fixed at their
current estimates using the full negative log-likelihood
function (eq. 3).

(3) Draw n sets of parameters, indexed by i, from a joint
normal distribution N(&, V).

(4) Estimate ¢: (a) use an iterative function minimizer to
estimate @; (b) for each function evaluation of the func-
tion minimizer, calculate the objective function as

I 1 2 L(CPUE|¢,e)L(C@AI|¢@,e)P(e’)
n4 g(eh ’

where g(e') = N(&'; €, V) and P(e") = N(&'; 0, 65D).

(5) Repeat steps 2—4 several times.

6) Qse an iterative function minimizer to re-estimate € and
V conditioned on the current estimates of 6Gg and 6 pyg
using the full negative log-likelihood function (eq. 3).

The estimates of € and estimates of the derived parameters
that are functions of € are taken from step 6. Estimates of
the other parameters are taken from step 4 the last time that
it is completed.

We found that 10 iterations of steps 2-4 were sufficient
for the algorithm to converge and 1000 samples in step 3 re-
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stricted the variation in the estimates between iterations after
convergence to acceptable levels. It is possible that the pop-
ulation can become negative for some of the samples of the
recruitment residuals from step 3. This causes computational
errors and we used a smooth function causing the population
size to be always slightly above zero when it would nor-
mally be predicted to go below zero. In a standard stock as-
sessment model, the objective function would be highly
penalized by the difference between the new biomass level
and the predicted level that is negative to aid the optimiza-
tion routine. However, in the IS method, one random sample
from step 3 may cause the biomass to go negative, causing
divergent behavior. Therefore, we did not include this pen-
alty, and its exclusion did not appear to cause any significant
bias in the results.

Full Bayesian integration (BI)

The Markov Chain Monte Carlo (MCMC) method is used
to sample from the posterior distribution (Gelman et al. 1995).
We use the MCMC method supplied with the AD Model
Builder software (Otter Research Ltd. 2000), which starts
the MCMC algorithm at the mode of the joint posterior dis-
tribution and uses multivariate normal jumping rules based
on the estimated variance—covariance matrix. One hundred
thousand MCMC steps were used and every 100th step was
saved. Other methods, such as sample importance resampling
(McAllister and Ianelli 1997), could also be used. Parameter
estimates are calculated as the mean of the marginal poste-
rior distribution (i.e., averaged across all the other model pa-
rameters). Only the prior for € is assumed to be informative,
the priors for the other parameters are chosen to be uninfor-
mative or diffuse (Table 1).

Penalized likelihood (PL - G), importance sampling
(S - oy), and full Bayesian integration (BI — 6z) with
a prior on 6

These methods are the same as PL, IS, and BI except
eq. 5 is used which has a prior on Gy.

Simulation analysis

We use simulation analysis to test the performance of each
of the methods described above. A simple age-structured
model (Appendix A) was set up to simulate a population for
T = 20 years, starting from an unexploited equilibrium popu-
lation (with no variation in the initial conditions). The effort
trajectory was set to give contrast in the biomass time series;
it increased in the first 10 years, decreased for the next
5 years, and stayed low for the last 5 years. The model was
used to generate catch, CPUE, and catch-at-age data. The
simulated recruitment was generated as being comprised of
T random annual residuals with standard deviation = 0.6 and
mean = 0. The standard deviation of the observation error in
the CPUE index, 6 cpyg, Was set at 0.3, and the sample size
of the catch-at-age data was set to 50. The same age-
structured model was then fit to the data to estimate the
model parameters. The parameters estimated in the model
were average recruitment (R), the standard deviation of re-
cruitment residuals (Gy), the catchability coefficient (g), the
standard deviation of the fit to the CPUE data (Gcpyg), and
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Table 1. Prior distributions used
for the model parameters in the
Bayesian integration method.

Parameter Prior

R U(0,2R ™°)
q In U(—o0, o)
O CPUE In U(—o0, o)
ORr In U(—oo, o)
€ N(0,63)

the annual recruitment residuals (g). The estimation scheme
was initiated with the true values for g and Gcpyg. R was set
to one and a half times the true value, € = 0, and 6z = 1.0.
The simulation analysis was repeated 500 times for two dif-
ferent scenarios: (1) using catch-at-age data for all years and
(2) using catch-at-age data for the last 10 years only. We
also generate simulated data using random recruitment that
is uniform (0, 2R).

For each simulation, we report the estimates of R, the bio-
mass in the last year of the simulation as a ratio of the bio-
mass in the first year of the simulation (B;/B)), Ry, OR, and

Gcpug- These estimates are compared with the true values by
~_ grue
calculating the relative error IGTHCI and reporting the 10,
i
50, and 90 percentiles and the average absolute error. We only
tested methods PL — oy, IS — 6, and BI — 6 using simu-

lated data with no catch-at-age data for the first 10 years.

Application

The methods are applied to the snapper stock on the west
coast of the North Island of New Zealand. The data consist
of total catch from 1931 to 1998, a CPUE relative abun-
dance index from 1974 to 1991, and catch-at-age data for
1975-1976, 1979, 19861987, and 1989-1998 (Nick Davies,
National Institute of Water and Atmospheric Research, P.O.
Box 1043, Whangarei, New Zealand, personal communica-
tion). We estimate the variation in annual recruitment.

Results

The relative error in the estimates of R is similar for all
the methods (Table 2). There is very little bias with or with-
out the first 10 years of catch-at-age data, except for BI that
gives a 8% positive bias when the first 10 years of catch-at-
age data are not used. The average error (average of the ab-
solute value of the relative error) is increased when the first
10 years of catch-at-age data are not used and is highest for
the likelihood method.

The results for the relative error in the estimates of B;/By
are also similar for all methods (Table 3). There is very little
bias with or without the first 10 years of catch-at-age data,
except for PL, which gives a 5% positive bias when the first
10 years of catch-at-age data are not used, and BI, which
gives a 4% and 6% positive bias with and without the first
10 years of catch-at-age data, respectively. Unlike the results
for R, the average error is not greatly increased when the
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Table 2. Relative error in the estimate of average recruitment R from four estimation methods.

Catch-at-age data used for all years

Catch-at-age data not used for first 10 years

Average Average

Median 10% 90% absolute Median 10% 90% absolute
MLE 0.00 -0.07 0.08 0.05 0.02 -0.15 0.36 0.16
PL -0.01 -0.06 0.06 0.04 0.02 -0.10 0.20 0.09
IS 0.00 -0.06 0.08 0.05 0.01 -0.12 0.19 0.10
BI 0.02 -0.04 0.08 0.04 0.08 -0.06 0.27 0.12

Note: MLE, maximum likelihood estimates using the full likelihood function; PL, penalized likelihood; IS, impor-

tance sampling; BI, Bayesian integration.

Table 3. Relative error in the estimate of biomass in the last year as a ratio of the biomass in the first

year B/By from the four estimation methods.

Catch-at-age data used for all years

Catch-at-age data not used for first 10 years

Average Average

Median 10% 90% absolute Median 10% 90% absolute
MLE -0.02 -0.25 0.27 0.17 0.01 -0.20 0.28 0.15
PL 0.01 -0.16 0.22 0.12 0.05 -0.16 0.35 0.17
IS 0.01 -0.16 0.23 0.12 0.01 -0.17 0.23 0.13
BI 0.04 -0.13 0.26 0.13 0.06 -0.12 0.29 0.14

Note: MLE, maximum likelihood estimates using the full likelihood function; PL, penalized likelihood; IS, impor-

tance sampling; BI, Bayesian integration.

first 10 years of catch-at-age data are not used, except for
the PL method.

The estimates of 6 differ substantially between the differ-
ent estimation methods (Table 4). When all catch-at-age data
were used, the MLE method gave moderately positively bi-
ased estimates of Gy, and when the first 10 years of catch-at-
age data were not used, the estimates of 6z became extremely
positively biased. This bias was due to many of the recruit-
ment estimates in the first few years, in which there are no
catch-at-age data, being estimated as either very large or close
to zero. The PL method is highly negatively biased and this
bias increases when the first 10 years of catch-at-age data are
not used. For some of the simulated data sets, 6 was esti-
mated to be zero, implying that the recruitment is the same
for each year. The percentage of data sets in which 6y was
estimated to be zero was much higher when the first 10 years
of catch-at-age data are not used (41%) compared with when
all catch-at-age data were used (2%). The IS and BI methods
performed much better at estimating 6g when the first
10 years of catch-at-age data were not used compared with
the MLE and PL methods. These methods also perform better
when all catch-at-age data were used.

The estimates of Gcpyg all have similar levels of average
error for the different methods, but different biases (Table 5).
The MLE, PL, and IS methods have a negative bias and BI
has a smaller, but positive, bias.

Estimates of the relative error in the annual recruitment
are similar for all four methods when the catch-at-age data
were used for all years (Fig. 1). The variance in relative er-
ror increased for the last 5 years because these cohorts are
only observed in a limited number of catch-at-age data sets.
The MLE method shows a very small negative bias for all
years, and the other methods show a small positive bias.
When the first 10 years of catch-at-age data were not used,

these methods performed differently, particularly in the first
half of the time period (Fig. 2). The MLE method cannot ad-
equately estimate recruitment in the first few years. As men-
tioned previously, these recruitments are often estimated to
be either unrealistically high or close to zero. The PL
method is better than the likelihood method at estimating re-
cruitment in the first few years but has higher average error
in the recruitment estimates for the latter years. The IS
method performs better than the MLE and PL methods. The
IS method shows less average error for the first few years
compared with the MLE method and less average error in
the latter years compared with the PL method. The BI method
performs similarly to the PL method.

When the true recruitment comes from a uniform distribu-
tion, the errors in the estimates of average recruitment, de-
pletion, and Gpyr are all very similar to those from when
the true recruitment comes from a lognormal distribution.
There is higher average error in the recruitment estimates for
all but the likelihood method (Fig. 3). For the scenario in
which there is no catch-at-age data for the first 10 years,
there is much more error in the estimates of recruitment for
the PL, IS, and Bayesian methods compared with when the
true recruitment is from a lognormal distribution (Fig. 4).
The increase in error occurs mostly in the first 10 years.

The inclusion of a prior on oy did not change the ability
to estimate R or ocpyg. Estimates of depletion were only
slightly improved (the average of the absolute value of the
relative error is 0.16, 0.12, and 0.13 for the PL, IS, and BI
methods, respectively). However, it did considerably decrease
the average error in the estimates of 6y (the average of the
absolute value of the relative error is 0.56, 0.13, and 0.13 for
the PL, IS, and BI methods, respectively). It also slightly re-
duced the error in the estimates of recruitment for the BI
method (Fig. 5). A misspecified prior ([Ls, = 0.3) gave simi-
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Table 4. Relative error in the estimate of the standard deviation of the annual recruitment residuals

from the four estimation methods.

Catch-at-age data used for all years

Catch-at-age data not used for first 10 years

Average Average

Median 10% 90% absolute Median 10% 90% absolute
MLE 0.09 -0.11 0.34 0.17 8.96 6.28 11.04 8.23
PL -0.19 -0.45 0.04 0.23 -0.54 -1.00 -0.20 0.64
IS -0.02 -0.22 0.21 0.14 -0.09 -0.35 0.18 0.19
BI 0.00 -0.23 0.23 0.15 -0.03 -0.33 0.28 0.20

Note: MLE, maximum likelihood estimates using the full likelihood function; PL, penalized likelihood; IS, impor-
tance sampling; BI, Bayesian integration.

Table 5. Relative error in the estimate of ocpyg from the four estimation methods.

Catch-at-age data used for all years

Catch-at-age data not used for first 10 years

Average Average

Median 10% 90% absolute Median 10% 90% absolute
MLE -0.05 -0.25 0.20 0.14 -0.11 -0.29 0.14 0.15
PL -0.07 -0.26 0.16 0.14 -0.04 -0.24 -0.21 0.14
IS -0.05 -0.24 0.19 0.14 -0.05 -0.24 0.19 0.14
BI 0.02 -0.19 0.27 0.14 0.02 -0.18 0.28 0.14

Fig. 1. Median (solid line), 10th percentile (lower broken line), and 90th percentile (upper broken line) for the relative error in annual
recruitment for the (a) maximum likelihood estimate, (b) penalized likelihood, (¢) importance sampling, and (d) Bayesian integration
methods when using all the catch-at-age data.
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lar results, causing a considerable negative bias in 6 for all
methods and a considerable negative bias in annual recruit-

ment estimates for the BI method.

For the application to the snapper stock on the west coast
of the North Island of New Zealand, the MLE method had
problems converging. The PL method produced an estimate
of zero. The IS method produced an estimate around 0.6.

The algorithm converged after about 10 iterations (Fig. 6).
However, there is still variation in the estimates at each iter-
ation. Increasing the number of samples from the importance
function from 100 to 500 did not reduce this variation
(Fig. 6). Therefore, a better estimate would be to take the
average over a series of iterations rather than using the result
after the final iteration. We use two averages, iterations 20
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Fig. 2. Median (solid line), 10th percentile (lower broken line), and 90th percentile (upper broken line) for the relative error in annual
recruitment for the (a) maximum likelihood estimate, (b) penalized likelihood, (c¢) importance sampling, and (d) Bayesian integration
methods when not using the catch-at-age data for the first 10 years.
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Fig. 3. Median (solid line), 10th percentile (lower broken line), and 90th percentile (upper broken line) for the relative error in annual
recruitment for the (a) maximum likelihood estimate, (b) penalized likelihood, (c¢) importance sampling, and (d) Bayesian integration
methods when using all the catch-at-age data and recruitment comes from a uniform distribution.
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Fig. 4. Median (solid line), 10th percentile (lower broken line), and 90th percentile (upper broken line) for the relative error in annual
recruitment for the (a) maximum likelihood estimate, (b) penalized likelihood, (c¢) importance sampling, and (d) Bayesian integration
methods when not using the catch-at-age data for the first 10 years and recruitment comes from a uniform distribution.
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to 100 and 80 to 100. For 100 samples from the importance
function, the estimates of oy are 0.597 and 0.584, respec-
tively. For 500 samples from the importance function, the
estimates of 6x are 0.620 and 0.584, respectively. The BI
method estimates 6 equal to 0.668 and 0.699 using the
mode of the marginal distribution and the average, respec-
tively. The posterior distribution ranges from about 0.4 to
1.0 and is skewed to the right (Fig. 7).

Discussion

The methods presented in this paper for estimating annual
recruitment in statistical catch-at-age models perform simi-
larly when used to estimate quantities that are derived from
a large number of annual recruitments (e.g., R) or are a func-
tion of recruitments that have catch-at-age data associated
with them (e.g., By/B)). Average recruitment is unaffected by
a lack of information (i.e., no catch-at-age data) for some
annual recruitments because the CPUE time series covers the
whole time period and the CPUE consists of the catches from
several cohorts. Therefore, the individual annual recruitments
can be incorrect, but the average of these recruitments must
be close to the true average so that the predicted CPUE can
be close to the observed CPUE. The methods also perform
similarly for all quantities when the catch-at-age data are
available for all years.

Annual recruitment and the standard deviation of the re-
cruitment residuals are poorly estimated by the likelihood
(MLE) and penalized likelihood (PL) methods when catch-
at-age data are missing. The method based on the marginal
likelihood (IS), which integrates across the recruitment re-

Year

siduals, and the full Bayesian integration (BI) method per-
form much better in estimating the standard deviation of the
recruitment residuals and annual recruitments. This indicates
that any analyses that use the standard deviation of the re-
cruitment residuals for forward projections or other analyses
should use the marginal likelihood or full Bayesian integra-
tion, particularly if catch-at-age data are not available for the
whole time period or if, for some years, the catch-at-age
data are uninformative. For example, we suggest that if an
environmental correlation with recruitment or a stock—
recruitment model is being considered, it should be inte-
grated into the stock assessment as suggested by Maunder
and Starr (2001) and Maunder and Watters (2003) and a
marginal likelihood or Bayesian integration used.

It is interesting to discover that 6 could be estimated us-
ing the PL method for nearly all artificial data sets when
catch-at-age data were available for all years. The estimation
problem is more complex than a traditional random effects
application, which has multiple measurements for a quantity
of interest for each individual. Each annual recruitment resid-
ual has information about it contained in multiple catch-at-age
data sets. In addition, because biomass is the accumulation of
multiple year classes, each annual recruitment residual is
represented in multiple CPUE data points. The fit to the
catch-at-age data is based on the multinomial distribution,
and therefore, the observation error variance for the catch-at-
age data is determined by the sample size. The only observa-
tion error variance that is estimated is for the CPUE data. It
is interesting to look at the negative log-likelihood profile
for 6 when using catch-at-age data for all years, which has
a local minimum around the true value and a global mini-
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Fig. 5. Median (solid line), 10th percentile (lower broken line),
and 90th percentile (upper broken line) for the relative error in
annual recruitment for the (a) penalized likelihood with a prior
on annual recruitment residuals (Gy), (b) importance sampling
with a prior on Gy, and (c) Bayesian integration with a prior on
or methods when not using the catch-at-age data for the first
10 years.
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mum at zero (Fig. 8). The negative log-likelihood profile for
or when using catch-at-age only for the last 10 years only
has a global minimum at zero (Fig. 8). However, if the esti-
mates of 6 = 0 are removed from the analysis, oy is still
moderately negatively biased (median relative error is —0.17%)
indicating that PL is still not a useful estimator for oj.

The results showed that estimates of annual recruitment
have larger error if the true distribution of annual recruit-
ment is different from that assumed in the analysis. How-
ever, the effect on the other quantities was small. The uniform
distribution is an extreme sensitivity analysis compared with
what empirical data suggest, therefore assuming a lognormal
distribution is unlikely to cause large errors in the estimates
for real applications.

Adding a prior on 6x only improved the estimates of G
and not the other quantities. The PL method still estimated
o = 0 for a large proportion of the data sets. From these re-
sults, we conclude that putting a prior on Gy is not particu-
larly useful unless the data are very uninformative about
annual recruitment. However, we did not investigate the influ-
ence on estimates of uncertainty (e.g., confidence intervals)

Can. J. Fish. Aquat. Sci. Vol. 60, 2003

because the marginal likelihood method is too computa-
tionally intense.

The application to the snapper stock gave values of oy
about 10-15% higher for BI compared with IS. The esti-
mates from the BI method are sensitive to what measure is
used to derive the estimates (e.g., average, mode of the mar-
ginal, median) and also probably to the prior distribution for
the other model parameters. The estimates from the IS method
are sensitive to which iteration is used as the estimate and
the random seed. It is probably best to use an average over
several iterations to get a more stable estimate. The esti-
mates of Gy are consistent with those suggested or assumed
for other fish stocks.

The methods described in this paper have different com-
putational demands and different estimation efficiencies. The
MLE and PL methods only require the maximization (or
minimization if the negative log-likelihood is used) to be
carried out once. If an accurate optimizer is used (i.e., one
based on automatic derivatives, e.g., Otter Research Ltd.
2000) and convergence has been achieved, this should be the
exact (local) solution. The only complication is that a local
rather than a global maximum may have been found. In con-
trast, the other methods are only approximations (to the mar-
ginal likelihood and the posterior distribution) and are more
computationally demanding. The IS algorithm requires a
numerical approximation based on averaging the likelihood
from random samples of € from the normal distribution
N(£,V). Therefore, the likelihood function has to be evalu-
ated for each sample. In addition, the IS method is also sub-
ject to the problem of local minima. The full Bayesian
integration uses MCMC, which requires a large number of
calculations of the objective function to approximate the
posterior distribution. If too few iterations of the MCMC al-
gorithm are performed, convergence may not be obtained,
and if too many iterations are performed, the algorithm will
take longer than needed. The priors used in the Bayesian
analysis could be changed to see if other forms reduce the
biases found for the Bayesian method when some of the
catch-at-age data are missing. Medians or modes of the mar-
ginal posterior distributions could be used as alternative esti-
mators. The MCMC algorithm started at the mode of the
joint posterior distribution with jumping rules based on the
covariance matrix. In initial simulations this caused bias in
the estimates of Gy because Gy was estimated to be close to
zero at the mode (see the PL results) and the estimated
covariance matrix was inappropriate to cover the range of
possible values for 6. To overcome this problem, we put a
penalty on Gy (uGR = 1.0) while estimating the mode and
the covariance matrix. The penalty was then removed when
the MCMC algorithm was run. Sensitivity analyses suggested
that this did not cause any significant biases in the results.

Simulated likelihood is a method that is becoming popular
for implementing nonlinear random effects models (e.g.,
Harley 2002). Simulated likelihood involves taking random
samples from the random effects distribution (this is the
same as using the IS method with the importance sample
equal to the random effects distribution). However, in applica-
tions like the one presented here in which the random effects
parameters are combined in the model (i.e., the recruitments
from multiple years are combined to determine the relative
index of abundance and proportional catch-at-age data), all
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Fig. 6. Estimates of i (Rsd) for the snapper (Pagrus auratus) application after each iteration of the importance sampling method for
two levels of the number of samples from the importance function (solid = 500, broken = 100).
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Fig. 7. Posterior distribution of i (Rsd) for the snapper (Pagrus auratus) application from the Bayesian integration method.
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samples in an iteration have such small probability that the
likelihood equals zero based on computer precision. The small
probability occurs because the relative biomass in the last
year, for a random sample of recruitments, is unlikely to be
close to the observed index of abundance as it is a combina-
tion of all randomly sampled recruitments. Therefore, the
minimization algorithm will not converge. This is our reason
for using the IS algorithm. The IS algorithm generates sam-
ples that provide non-zero likelihoods because they are based

0.8

1.0 1.2 1.4

Rsd

on the importance function that has been derived from fit-
ting the model to the data and therefore the samples produce
predictions close to the observed data. The IS method is
similar to the SIR algorithm used in Bayesian analysis (see
Punt and Hilborn 1997).

The estimation of 6y is very important for projecting the
uncertainty in the consequences of future management strat-
egies. For example, the probability of extinction for a popu-
lation with an average population growth rate of zero is
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Fig. 8. Scaled negative log-likelihood for different values of o (Rsd) from a single simulated data set with catch-at-age data for all
years (solid line) and catch-at-age data only for the last 10 years (broken line).
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higher for a population that has a high 6 than for a popula-
tion that has low . Therefore, it is important to differenti-
ate between temporal variation in recruitment and estimation
error. The results of our analyses show that using a marginal
likelihood or full Bayesian integration should be the pre-
ferred methods when o is used to determine the temporal
variation in recruitment for forward projections. However,
we have not investigated if the improved estimates of oy
would produce better management advice. Given the greater
computational demands of the marginal likelihood or full
Bayesian integration, further studies should be carried out to
determine if the additional computational demands are worth
the benefit they provide. This would require carrying out
management policy simulations.

The methods presented in this paper could be extended to
include a stock-recruitment relationship, environmental rela-
tionship, or other model parameters. A stock—recruitment re-
lationship or an environmental relationship can easily be
included in the analysis by replacing R in eq. 1 (see Maun-
der and Starr (2001) and Maunder and Watters (2003) for
details). Process error for other model parameters can also
be integrated out of the likelihood function. For example,
fishing mortality is often modeled as a function of effort
(E}), catchability (¢), and an annual residual (85 ),

F, = quexp(Sﬁ)

and a likelihood comparing the predicted and observed catch
is included in the objective function. € can be integrated
out of the likelihood function in the same manner as € y s
for recruitment. Meta-analysis, in which information is
shared between stock assessments, could be carried out by
modeling parameters (e.g., natural mortality) between popu-
lations as random effects and a marginal likelihood inte-
grated across the random effects used for estimation.

Rsd

In conclusion, if informative catch-at-age data are avail-
able for all years, then all of the methods perform well at
estimating annual recruitment, average recruitment, and de-
pletion level. In this case, the likelihood or penalized likeli-
hood methods should be used because they are much less
computationally intense, unless estimates of G are needed.
O can be estimated using the penalized likelihood method if
all years have informative catch-at-age data; however, oy is
moderately negatively biased. The marginal likelihood and
Bayesian integration methods perform best overall at esti-
mating the model parameters when catch-at-age data are
missing for some years.
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Appendix A. Description of simulator and
estimator

The following is a description of the model equations
used for the data simulator and for the estimator. The model
is run from an unexploited state at the start of the fishery for
20 years. The model includes 10 age classes, with the 10th
age class being a plus group.

Dynamics
N,, = Rexp(e, - 0.50%)
Nv,u = (Ny—l,u—l(l - uy—lsa—l))eiM fOf a<A

Ny,A = (NJ—I,A—I(l - uy—lsA—l))e_M

+ (Ny—I,A(l - uy—lsA))e_M

*
— C)"
u, =
By
By = Y Ny s,
a

where N, , are the numbers in age class a at the beginning
of year y, R is the average recruitment, 85 is the recruitment
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anomaly for year y, oy is the standard deviation for the re-
cruitment residuals, C,, is the catch in numbers of age a
individuals in year y, M is the natural mortality rate, A is the
maximum age used in the analysis, u, is the exploitation rate
in year y, s, is the selectivity to the fishing gear for age a in-
dividuals, C7 is the total catch in weight for year y, B, is the
exploitable biomass for year y, and w, is the weight for an
individual of age a.

Initial conditions

Ni,=ReMaDforl <a<A

N = Ny ae™
b4 1—-e™
Simulation
e, ~ N(0,0%)

PUE 2
ES UE N(O, GCPUE)

CPUE, = ¢B, exp(e§*F — 0.56¢pyp)

numbers

n,, ~ Multinomial| <2*—— n =50

y numbers ’
2Ch
a
Cnumbers =N. us
y.a - y.atya

where ¢ is the catchability coefficient for the CPUE index,
€CPUE s the observation error in the CPUE index, 6 cpyg iS
the standard deviation of the error in the CPUE index, n,, is
the number of individuals of age a in the catch-at-age sample
in year y, and n is the number in the catch-at-age sample.

Estimation

Likelihoods
CPUE

(In(CPUE,) — In(¢B,))

—In L(116) = 2 In(G cpyp) + 262
> OcpuE

Catch-at-age (modified from Fournier et al. 1998)

_(P_v,a _13}*,(1)2

5 +0.001
26¢aa

—In L(C@AIB) = —In| exp

1
1-P, )P, ,+—
(=P, P, A]

2” v.a
a

2
Ctea =

n

— Yy.a
y.a —
Z”w
a

P
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numbers
A Cya Ny aSqity Ny oS,

p _ _ y.a
y.a numbers -
ZCM ZNyqasauy ZN}%uSa
a a

a

where n,, ,

for year y.

is the numbers of age a in the catch-at-age sample

Recruitment penalty

R

2
In P(eRlog) = len(ﬁR) + (;)2 ]

y

Fixed parameters

w, =13
[,=1-¢01la
M=02

s =1 for all a
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